RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

SECOND YEAR [BATCH 2016-19] B.A./B.Sc. FOURTH SEMESTER (January – June) 2018 Mid-Semester Examination, March 2018

: 16/03/2018 Date Time : 1 pm – 2 pm MATH FOR ECONOMICS (General) Paper : IV

Full Marks : 25

 $[2 \times 2 \cdot 5]$

[Use a separate Answer Book <u>for each group</u>]

<u>Group – A</u>

- Answer **any two** questions : 1.
 - If λ be an eigen value of a non-singular matrix A, then prove that λ^{-1} is an eigen value of A^{-1} . a)
 - Verify Cayley-Hamilton theorem for the matrix A and use it find A^{-1} , where $A = \begin{pmatrix} 2 & 1 \\ -3 & 5 \end{pmatrix}$. b)
 - c) Find the eigen values and the corresponding eigen vectors of the following real matrix

 - $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$

2. Answer **any one** question :

- Define rank of a Linear transformation. a) i)
 - ii) Let P_i be the vector space of all functions from \mathbb{R} to \mathbb{R} , with degree less equal to *i*. Let $I: P_2 \rightarrow P_3$ be a linear transformation defined by $I(f) = \int_0^x f(t) dt$. Find rank of I.
- b) Let D be a linear operator on P₂ (See a(ii) for Definition) defined by $D(f(x)) = \frac{d}{dx}(f(x))$ and $\alpha = \{1, x, x^2\}, \beta = \{1 + x, (1 + x)^2, 1\}$ be two ordered basis of P₂. Find $[D]_{\alpha}, [D]_{\beta}, [D]_{\alpha}^{\beta}$.
- 3. Answer **any one** question :
 - Find out the equilibrium of the following game using (i) iterated elimination of strictly a) dominated strategy (iii) the concept of Nash Equilibrium [2.5+2.5]

		Player B	
		Str. 1	Str. 2
Player A	Str. 1	10, 15	12, 23
	Str. 2	8, 10	7, 8

Solve the following two person zero-sum game using maximin-minimax principle : [5] b)

		Player B		
		\mathbf{B}_1	B_2	B_3
	A_1	6	3	-3
Player A	A_2	-2	1	2
	A_3	5	4	6

[1×5]

[1]

[4]

[1×5]

[5]

<u>Group – B</u>

4.	An	Answer any two questions :		[2×2]
	a)	Draw graphically the feasible region given by the L.P.P.		
		Maximize z =		
		Subject to	$\mathbf{x}_1 \leq 2\mathbf{x}_2$	
			$2x_1 \ge x_2; x_1, x_2 \ge 0$	[2]
	b)	Find the Basi	c feasible solutions (B.F.S) of the following two equations	
		$2x_1 + x_2 + 4x$	$a_3 = 11$	[2]
		$3x_1 + x_2 + 5x_3$	$_{3} = 14$	[2]
	c)	Reduce the fo	Reduce the following L.P.P in its standard form, with non negative variables.	
		Maximize $z = 3x_1 + 2x_2 + 5x_3$		
		Subject to	$2x_1 - 3x_2 \le 3$	
			$4x_1 + 2x_2 - 4x_3 \ge 5$	
			$2x_1 + 0x_2 + 3x_3 \le 2; x_1, x_2, x_3 \ge 0$	[2]
	d)	Find the dual of the following L.P.P		
		Maximize $z = 3x_1 + 2x_2$		
		Subject to	$3x_1 + 4x_2 \le 22$	
			$3x_1 + 2x_2 \le 16$	
			$x_2 \ge 3; x_1, x_2 \ge 0$	[2]
5.	Answer any one question :		[1×6]	
	a) Solve the following L.P.P graphically			
		Maximize z =	= 150x + 100y	
		Subject to	$6x + 5y \le 60$	

$$4x + 5y \le 40$$
; x, y ≥ 0 [6]

[6]

b) A firm manufactures three products A, B and C. The profits are Rs. 3, Rs. 2 and Rs. 4 for each unit of the products A, B and C respectively. The firm has two machines and below is the required processing time in minutes for each machine on each product. Machine X and Y have 2000 and 3000 machine minutes respectively.

		Product		
		А	В	С
Machine	Х	4	3	5
	Y	2	3	4

The firm manufactures 100 A's, 200 B's and 50 C's but not more than 150 A's. Set up a L.P.P to maximize the profit.

c) Given the L.P.P,

Maximize $z = 2x_1 + 3x_2 + 4x_3$ Subject to $x_1 - 5x_2 + 3x_3 = 7$ $2x_1 - 5x_2 \le 3$ $3x_2 - x_3 \ge 5$

 $x_1, x_2 \ge 0$ and x_3 is unrestricted in sign. Formulate the dual of the L.P.P.

_____ X _____

[6]